30 research outputs found

    The arabidopsis RCC1 family protein TCF1 regulates freezing tolerance and cold acclimation through modulating lignin biosynthesis

    Get PDF
    Cell water permeability and cell wall properties are critical to survival of plant cells during freezing, however the underlying molecular mechanisms remain elusive. Here, we report that a specifically cold-induced nuclear protein, Tolerant to Chilling and Freezing 1 (TCF1), interacts with histones H3 and H4 and associates with chromatin containing a target gene, BLUE-COPPER-BINDING PROTEIN (BCB), encoding a glycosylphosphatidylinositol-anchored protein that regulates lignin biosynthesis. Loss of TCF1 function leads to reduced BCB transcription through affecting H3K4me2 and H3K27me3 levels within the BCB gene, resulting in reduced lignin content and enhanced freezing tolerance. Furthermore, plants with knocked-down BCB expression (amiRNA-BCB) under cold acclimation had reduced lignin accumulation and increased freezing tolerance. The pal1pal2 double mutant (lignin content reduced by 30% compared with WT) also showed the freezing tolerant phenotype, and TCF1 and BCB act upstream of PALs to regulate lignin content. In addition, TCF1 acts independently of the CBF (C-repeat binding factor) pathway. Our findings delineate a novel molecular pathway linking the TCF1-mediated cold-specific transcriptional program to lignin biosynthesis, thus achieving cell wall remodeling with increased freezing tolerance

    Functional characterisation of Arabidopsis phototropin 1 in the hypocotyl apex

    Get PDF
    Phototropin (phot1) is a blue light-activated plasma membrane-associated kinase that acts as the principal photoreceptor for shoot phototropism in Arabidopsis in conjunction with the signalling component Non-Phototropic Hypocotyl 3 (NPH3). PHOT1 is uniformly expressed throughout the Arabidopsis hypocotyl, yet decapitation experiments have localised the site of light perception to the upper hypocotyl. This prompted us to investigate in more detail the functional role of the hypocotyl apex, and the regions surrounding it, in establishing phototropism. We used a non-invasive approach where PHOT1-GFP (P1-GFP) expression was targeted to the hypocotyl apex of the phot-deficient mutant using the promoters of CUP-SHAPED COTYLEDON 3 (CUC3) and AINTEGUMENTA (ANT). Expression of CUC3::P1-GFP was clearly visible at the hypocotyl apex, with weaker expression in the cotyledons, whereas ANT::P1-GFP was specifically targeted to the developing leaves. Both lines showed impaired curvature to 0.005 μmol m-2 s-1 unilateral blue light, indicating that regions below the apical meristem are necessary for phototropism. Curvature was however apparent at higher fluence rates. Moreover, CUC3::P1-GFP partially or fully complemented petiole positioning, leaf flattening and chloroplast accumulation, but not stomatal opening. Yet, tissue analysis of NPH3 de-phosphorylation showed that CUC3::P1-GFP and ANT::P1-GFP mis-express very low levels of phot1 that likely account for this responsiveness. Our spatial targeting approach therefore excludes the hypocotyl apex as the site for light perception for phototropism and shows that phot1-mediated NPH3 de-phosphorylation is tissue autonomous and occurs more prominently in the basal hypocotyl

    Venetoclax causes metabolic reprogramming independent of BCL-2 inhibition

    Get PDF
    BH3-mimetics are a new class of anti-cancer drugs that inhibit anti-apoptotic Bcl-2 proteins. In doing so, BH3-mimetics sensitise to cell death. Venetoclax is a potent, BCL-2 selective BH3-mimetic that is clinically approved for use in chronic lymphocytic leukaemia. Venetoclax has also been shown to inhibit mitochondrial metabolism, this is consistent with a proposed role for BCL-2 in metabolic regulation. We used venetoclax to understand BCL-2 metabolic function. Similar to others, we found that venetoclax inhibited mitochondrial respiration. In addition, we also found that venetoclax impairs TCA cycle activity leading to activation of reductive carboxylation. Importantly, the metabolic effects of venetoclax were independent of cell death because they were also observed in apoptosis-resistant BAX/BAK-deficient cells. However, unlike venetoclax treatment, inhibiting BCL-2 expression had no effect on mitochondrial respiration. Unexpectedly, we found that venetoclax also inhibited mitochondrial respiration and the TCA cycle in BCL-2 deficient cells and in cells lacking all anti-apoptotic BCL-2 family members. Investigating the basis of this off-target effect, we found that venetoclax-induced metabolic reprogramming was dependent upon the integrated stress response and ATF4 transcription factor. These data demonstrate that venetoclax affects cellular metabolism independent of BCL-2 inhibition. This off-target metabolic effect has potential to modulate venetoclax cytotoxicity

    Breast cancer dependence on MCL-1 is due to its canonical anti-apoptotic function-AAM

    Get PDF
    High levels of the anti-apoptotic BCL-2 family member MCL-1 are frequently found in breast cancer and, appropriately, BH3-mimetic drugs that specifically target MCL-1’s function in apoptosis are in development as anti-cancer therapy. MCL-1 also has reported non-canonical roles that may be relevant in its tumour-promoting effect. Here we investigate the role of MCL-1 in clinically relevant breast cancer models and address whether the canonical role of MCL-1 in apoptosis, which can be targeted using BH3-mimetic drugs, is the major function for MCL-1 in breast cancer. We show that MCL-1 is essential in established tumours with genetic deletion inducing tumour regression and inhibition with the MCL-1-specific BH3-mimetic drug S63845 significantly impeding tumour growth. Importantly, we found that the anti-tumour functions achieved by MCL-1 deletion or inhibition were completely dependent on pro-apoptotic BAX/BAK. Interestingly, we find that MCL-1 is also critical for stem cell activity in human breast cancer cells and high MCL1 expression correlates with stemness markers in tumours. This strongly supports the idea that the key function of MCL-1 in breast cancer is through its anti-apoptotic function. This has important implications for the future use of MCL-1-specific BH3-mimetic drugs in breast cancer treatment

    Mitochondrial permeabilization engages NF-κB-dependent anti-tumour activity under caspase deficiency

    Get PDF
    Apoptosis represents a key anti-cancer therapeutic effector mechanism. During apoptosis, mitochondrial outer membrane permeabilization (MOMP) typically kills cells even in the absence of caspase activity. Caspase activity can also have a variety of unwanted consequences that include DNA damage. We therefore investigated whether MOMP-induced caspase-independent cell death (CICD) might be a better way to kill cancer cells. We find that cells undergoing CICD display potent pro-inflammatory effects relative to apoptosis. Underlying this, MOMP was found to stimulate NF-κB activity through the downregulation of inhibitor of apoptosis proteins. Strikingly, engagement of CICD displays potent anti-tumorigenic effects, often promoting complete tumour regression in a manner dependent on intact immunity. Our data demonstrate that by activating NF-κB, MOMP can exert additional signalling functions besides triggering cell death. Moreover, they support a rationale for engaging caspase-independent cell death in cell-killing anti-cancer therapies

    The initiator methionine tRNA drives secretion of type II collagen from stromal fibroblasts to promote tumor growth and angiogenesis

    Get PDF
    Summary: Expression of the initiator methionine tRNA (tRNAi Met) is deregulated in cancer. Despite this fact, it is not currently known how tRNAi Met expression levels influence tumor progression. We have found that tRNAi Met expression is increased in carcinoma-associated fibroblasts, implicating deregulated expression of tRNAi Met in the tumor stroma as a possible contributor to tumor progression. To investigate how elevated stromal tRNAi Met contributes to tumor progression, we generated a mouse expressing additional copies of the tRNAi Met gene (2+tRNAi Met mouse). Growth and vascularization of subcutaneous tumor allografts was enhanced in 2+tRNAi Met mice compared with wild-type littermate controls. Extracellular matrix (ECM) deposited by fibroblasts from 2+tRNAi Met mice supported enhanced endothelial cell and fibroblast migration. SILAC mass spectrometry indicated that elevated expression of tRNAi Met significantly increased synthesis and secretion of certain types of collagen, in particular type II collagen. Suppression of type II collagen opposed the ability of tRNAi Metoverexpressing fibroblasts to deposit pro-migratory ECM. We used the prolyl hydroxylase inhibitor ethyl- 3,4-dihydroxybenzoate (DHB) to determine whether collagen synthesis contributes to the tRNAi Met-driven pro-tumorigenic stroma in vivo. DHB had no effect on the growth of syngeneic allografts in wild-type mice but opposed the ability of 2+tRNAi Met mice to support increased angiogenesis and tumor growth. Finally, collagen II expression predicts poor prognosis in high-grade serous ovarian carcinoma. Taken together, these data indicate that increased tRNAi Met levels contribute to tumor progression by enhancing the ability of stromal fibroblasts to synthesize and secrete a type II collagen-rich ECM that supports endothelial cell migration and angiogenesis

    Secreted CLIC3 drives cancer progression through its glutathione-dependent oxidoreductase activity

    Get PDF
    The secretome of cancer and stromal cells generates a microenvironment that contributes to tumour cell invasion and angiogenesis. Here we compare the secretome of human mammary normal and cancer-associated fibroblasts (CAFs). We discover that the chloride intracellular channel protein 3 (CLIC3) is an abundant component of the CAF secretome. Secreted CLIC3 promotes invasive behaviour of endothelial cells to drive angiogenesis and increases invasiveness of cancer cells both in vivo and in 3D cell culture models, and this requires active transglutaminase-2 (TGM2). CLIC3 acts as a glutathione-dependent oxidoreductase that reduces TGM2 and regulates TGM2 binding to its cofactors. Finally, CLIC3 is also secreted by cancer cells, is abundant in the stromal and tumour compartments of aggressive ovarian cancers and its levels correlate with poor clinical outcome. This work reveals a previously undescribed invasive mechanism whereby the secretion of a glutathione-dependent oxidoreductase drives angiogenesis and cancer progression by promoting TGM2-dependent invasion

    Mitochondrial inner membrane permeabilisation enables mtDNA release during apoptosis

    Get PDF
    During apoptosis, pro-apoptotic BAX and BAK are activated, causing mitochondrial outer membrane permeabilisation (MOMP), caspase activation and cell death. However, even in the absence of caspase activity, cells usually die following MOMP. Such caspase independent cell death is accompanied by inflammation that requires mitochondrial DNA (mtDNA) activation of cGAS-STING signaling. Because the mitochondrial inner membrane is thought to remain intact during apoptosis, we sought to address how matrix mtDNA could activate the cytosolic cGAS-STING signaling pathway. Using super-resolution imaging, we show that mtDNA is efficiently released from mitochondria following MOMP. In a temporal manner, we find that following MOMP, BAX/BAK-mediated mitochondrial outer membrane pores gradually widen. This allows extrusion of the mitochondrial inner membrane into the cytosol whereupon it permeablises allowing mtDNA release. Our data demonstrate that mitochondrial inner membrane permeabilisation (MIMP) can occur during cell death following BAX/BAK-dependent MOMP. Importantly, by enabling the cytosolic release of mtDNA, inner membrane permeabilisation underpins the immunogenic effects of caspase-independent cell death

    Cartographie et caractérisation des gènes d'ADNr 5S chez Arabidopsis thaliana: Identification des ARNr 5S matures

    No full text
    CLERMONT FD-BCIU Sci.et Tech. (630142101) / SudocSudocFranceF
    corecore